

TestingWhiz 6.0

11/20/2017

Team Collaboration with

TestingWhiz

1 | P a g e

Contents

What is Collaborative Software Development? .. 2

How Does Collaboration Work in Automated Software Testing? .. 2

Need for Version Control in Collaborative Approach ... 2

Benefits of Using Version Control System in Collaborative Approach ... 2

Following Standard Practice – To be a Good Team Player ... 2

Restoring Different Versions without Messing Things ... 2

Unlimited Tracking of Who did What ... 3

TestingWhiz Features enabling Collaboration .. 3

Methods .. 3

Data Tables.. 3

Import Test Wizard ... 3

Final Step ... 12

2 | P a g e

What is Collaborative Software Development?
Collaborative Software Development is an approach allowing multiple team members from analysis,

development and quality assurance to share work, ideas, and tasks for achieving common goals. The

method specifically aims to increase the success of teams as they engage in collaborative problem solving,

thereby goals of the project.

How Does Collaboration Work in Automated Software Testing?
In the context of automated software testing, collaboration can occur between developers and testers

in terms of creating test plans, test scenarios, test scripts, and test data jointly along with analyzing test

results.

Need for Version Control in Collaborative Approach
Collaborative approach is not limited to sharing a common workspace, environment or a shared

files/folder. Rather, it is enabling teams to work on a common file yet impart absolute freedom to make

changes at any time with Version Control System.

In traditional set-up, team members verbally inform about working on a file so that other team members

do not work on it to avoid duplication. This process is extremely prone to errors, as someone will overwrite

someone else’s changes, sooner or later.

With a version control system in place, everybody in the team can work absolutely freely - on any file at

any time. The version control system will later allow you to merge all the changes into a common version.

There's no question where the latest version of a file or the whole project is. It's in a common, central

place, i.e. your version control system.

Benefits of Using Version Control System in Collaborative Approach

Following Standard Practice – To be a Good Team Player
Version control system allows independent working in a team or on your own. It acknowledges that there

is only one project. Therefore, there's only one version on your disk that you're currently working on.

Everything else -- all the past versions and variants are neatly packed up inside the VCS. When you need

it, you can request any version at any time and you'll have a snapshot of the complete project right at

hand.

e.g. Test Case 1 for Jira ID 1 committed to a repository as Version 1. Later there was a negative scenario

added for the same requirement and you label it as Version 2.

Restoring Different Versions without Messing Things
Being able to restore older versions of a file (or even the whole project) effectively means one thing: you

can't mess up! If the changes you've made lately prove to be redundant, you can simply undo them in a

few clicks. Knowing this should make you a lot more relaxed when working on important bits of a project.

e.g. Test case 2 for Jira ID 2 committed to a repository as Version 1. Someone modified the case and

made it unstable and committed it as Version 2. You know the issue, revert to Version 1.

3 | P a g e

Unlimited Tracking of Who did What
Every time you save a new version of your project, your VCS requires you to provide a short description

of what was changed. Additionally, (if it's a code / text file), you can see what exactly was changed in the

file's content. This helps you understand how your project evolved between versions.

e.g. Test case 3 for Jira id 3 committed by developer1. Test case 3 got modified by developer 2 for covering

exception handling reasons. Test case 3 got modified by developer 3 for optimization reasons.

TestingWhiz Features enabling Collaboration

Methods
Any method that performs a single conceptual task should be able to stand on its own as a first-class

candidate for reuse and hence labeled as a Method. TestingWhiz allows creating Methods out of Test

Steps. These Methods can take parameters, can call other methods, can call itself, can make use of data

tables, can reference parameters, can return values, can perform conditional execution and lot more.

Once Methods are created, they can be called in a test case using operation named ‘Call Method’.

Besides calling Methods from the same Test Project, TestingWhiz also allows calling Methods from other

TestingWhiz project file, allowing dynamic linking features. This feature offers unique reusability and

maintenance benefits to enterprise teams.

Data Tables
Data tables are interim data storage locations in TestingWhiz simulating an Excel-like interface. These

data tables can be populated by querying a database, importing excel files, pasting data from the

clipboard or generating data using built-in test data generator. Once data is inside data table, it can be

shared across Test Project.

Import Test Wizard
TestingWhiz offers a unique wizard to import Test Cases, Methods and Data Tables. Using this wizard,

scripts can be merged and updated easily. Below are the steps demonstrating import wizard capabilities

from the tool for merging TestingWhiz projects.

4 | P a g e

Step 1: Use File > Import Test Project

Step 2: Select the TestingWhiz project from where you want to import data

Step 3: Select test cases you want to import

5 | P a g e

Step 4: Select data tables you want to import

6 | P a g e

Step 5: Select methods you want to import

Below are some sample scenarios demonstrating state, pre-merge condition and post merge outcome.

7 | P a g e

1. Sample Scenarios

Person 1 Person 2 Action Expected outcome

File1.Suite 1.TC 1-10 File1.Suite 2 TC 1-10 Merge Generate a new merged file with Suite 1 – TC 1-10

from file 1 and Suite 2 – TC 1-10 from file 2

Person1 File_Suit1 having 10 Test Case Person2 – File_Suit2 having 10 Test Case

Before Merge After Merge [Import Test Project] from Person 1

File Suit1 & Person 2 File Suit2

8 | P a g e

2. Sample Scenarios

Person 1 Person 2 Action Expected outcome

File1.Suite 3. TC 1 File2.Suite 3. TC 2 Merge Generate a new merged file with Suite 1 – TC 1-

10, Suite 2 – TC 1-10, Suite 3 – TC 1-2

Person1 File_Suit3 TC1 Person2 – File Suit3 TC2

After Import Person1 Suit3_TC1 After Import Person2 Suit3_TC2

9 | P a g e

3. Sample Scenarios

Person 1 Person 2 Action Expected outcome

File method 1 File method 1 Merge Keep Person 1’s changes

Person1 File Method1 Person2 – File Method1

After Import method1 from Person1 File TestingWhiz preserves both the files if they are

having same name. User can decide to discard

one based on code inside.

10 | P a g e

4. Sample Scenarios

Person 1 Person 2 Action Expected outcome

File method 1 File method 1 Merge Keep Person 2’s changes

Person1 File Method1 Person2 – File Method1

After Import method1 from Person1 File TestingWhiz preserves both the files if they are

having same name. User can decide to discard

one based on code inside.

11 | P a g e

5. Sample Scenarios

Person 1 Person 2 Action Expected outcome

File data table 1 File data table 1 Merge Create a new file with both data tables 1 and 2

Person1 DataTable Person2 Data Table

Before Import Data Table TestingWhiz preserves both the files if they are

having same name. User can decide to discard

one based on code inside.

12 | P a g e

Final Step

TestingWhiz allows integration with versioning tools like SVN. The merged scripts can be checked in to

your SVN repository using TestingWhiz IDE itself. Below are the steps:

Setup SVN repository:

Select the project and perform Check-in, Check-out, Show history or Revert operations.

13 | P a g e

Optionally, once the code is merged, use your existing Version Control System installed on your machine

to check-in changes in SVN, GIT or some such and yes, do not forget to put comment as a reason for

check-in.

Below are samples for SVN as a repository.

Sample Commit:

14 | P a g e

Sample Show Log:

End

